This classification is based on the US Census Bureau, which counts people of MENA (Middle Eastern and North African) descent as White. Hispanic/Latinx is not a race according to the Census (it’s an ethnicity).
= c('female', 'feminine', 'f', 'women')
fem = c('male', 'man', 'm', 'trans man', 'masculine', 'masculino')
masc = c('non-binary')
nonb
= c('caucasian', 'caucasian/white', 'caucasic', 'caucasoid', 'european', 'greek - white',
white 'italian', 'polish', 'middle eastern', 'egyptian', 'mediterranean white', 'mena',
'south european caucasian', 'white', 'white british', 'white/caucasian', 'whitr')
= c('black', 'black/african american', 'north african')
black = c('asian', 'indian')
asian = c('american indian/alaska native')
ind_nat = c('mixed', 'asian and white', 'asian/white', 'black/aa + asian', 'multi-racial',
multi 'white + asian')
= c('brown', 'latinx/hispanic/caribbean', 'prefer not to say') other
= function(data) {
print_demographics = data %>%
data mutate(gender = tolower(gender),
race = tolower(race),
gender = case_when(gender %in% fem ~ 'Female',
%in% masc ~ 'Male',
gender %in% nonb ~ 'Non-binary',
gender TRUE ~ NA_character_),
race = case_when(race %in% white ~ 'White',
%in% black ~ 'Black',
race %in% asian ~ 'Asian',
race %in% ind_nat ~ 'American Indian/Alaska Native',
race %in% multi ~ 'Multiracial',
race %in% other ~ 'Undisclosed/other',
race TRUE ~ NA_character_))
# gender
%>%
data group_by(gender) %>%
summarise(n = n()) %>%
print()
# age
print('age:')
mean(data$age, na.rm = T) %>% print()
sd(data$age, na.rm = T) %>% print()
# race
%>%
data group_by(race) %>%
summarise(n = n()) %>%
print()
# ethnicity
%>%
data group_by(ethnicity) %>%
summarise(n = n()) %>%
print()
# time taken
print('time taken (min):')
print(mean(data$time, na.rm = T)/60/1000)
print(sd(data$time, na.rm = T)/60/1000)
}
= function(exp, condition, p) {
update_search_one = ifelse(condition == 'agent', 'craft', 'color')
type
= get(paste0('data.exp', exp, '.', condition)) %>%
data mutate(prob = 1 - (1-p)^num)
= get(paste0('info.exp', exp, '.', condition))
info = lmer(resp ~ 1 + prob + (1 | id),
model data = data)
= data %>%
data_means mutate(pred = model %>%
predict(newdata = data,
re.form = NA)) %>%
group_by_at(c('trial', type, 'pred')) %>%
summarise(resp = mean(resp),
pred = mean(pred)) %>%
merge(info %>%
select(trial, type),
by = c('trial', type))
= rmse(data_means$resp, data_means$pred)
rmse = get(paste0('rmse.exp', exp, '.', condition, '_uniform')) %>%
data_rmse rbind(c(p, rmse))
return(data_rmse)
}
= function(exp, condition) {
plot_search_one = get(paste0('rmse.exp', exp, '.', condition, '_uniform'))
data_rmse
= ggplot(data_rmse,
g aes(x = p,
y = rmse)) +
geom_point() +
# best parametrization
geom_point(data = data_rmse %>%
filter(rmse == min(rmse)),
color = 'red') +
ggtitle(paste(condition, 'condition')) +
theme(text = element_text(size = 12),
axis.ticks.x = element_blank()) +
scale_x_continuous(name = 'p',
limits = c(0, 1),
breaks = seq(0, 1, by = 0.2)) +
scale_y_continuous(name = 'RMSE',
limits = c(0, 5.5),
breaks = seq(0, 5))
return(g)
}
= function(exp, condition, p_low, p_high) {
update_search_two = ifelse(condition == 'agent', 'craft', 'color')
type
= get(paste0('data.exp', exp, '.', condition)) %>%
data mutate(prob = 1 - (1-p_low)^low * (1-p_high)^high)
= get(paste0('info.exp', exp, '.', condition))
info = lmer(resp ~ 1 + prob + (1 | id),
model data = data)
= data %>%
data_means mutate(pred = model %>%
predict(newdata = data,
re.form = NA)) %>%
group_by_at(c('trial', type, 'pred')) %>%
summarise(resp = mean(resp),
pred = mean(pred)) %>%
merge(info %>%
select(trial, type),
by = c('trial', type))
= rmse(data_means$resp, data_means$pred)
rmse = get(paste0('rmse.exp', exp, '.', condition, '_full')) %>%
data_rmse rbind(c(p_low, p_high, rmse))
return(data_rmse)
}
= function(exp, condition) {
plot_search_two = get(paste0('rmse.exp', exp, '.', condition, '_full')) %>%
data_rmse mutate(p_low = as.factor(p_low),
p_high = as.factor(p_high))
= ggplot(data_rmse,
g aes(x = p_low,
y = p_high,
fill = rmse)) +
geom_tile(color = 'black') +
coord_fixed() + # square tiles
# best parametrization
geom_point(data = data_rmse %>%
filter(rmse == min(rmse)),
color = 'red',
size = 2) +
scale_fill_gradient(low = "gray20", high = "white") +
guides(fill = guide_colourbar(barwidth = 0.5,
barheight = 5,
title = 'RMSE')) +
ggtitle(paste(condition, 'condition')) +
theme(text = element_text(size = 12),
legend.position = c(0.9, 0.3),
axis.ticks.x = element_blank()) +
scale_x_discrete(name = 'low availability p',
breaks = seq(0, 1, by = 0.2)) +
scale_y_discrete(name = 'high availability p',
breaks = seq(0, 1, by = 0.2))
return(g)
}
= function(data_means, model_name, xlabel, breaks) {
make_scatter = paste('pred_', model_name, sep = '')
col_name
if (model_name == 'baseline') {
= 'N/A'
r else {
} = cor(data_means$resp_mean, data_means[[col_name]]) %>%
r round(2)
}
= rmse(data_means$resp_mean, data_means[[col_name]])
rmse
= ggplot(data = data_means,
g aes(x = get(col_name),
y = resp_mean)) +
geom_abline(intercept = 0, slope = 1, linetype = 2) +
geom_linerange(size = 0.5,
mapping = aes(ymin = resp_low,
ymax = resp_high),
color = "lightgray") +
geom_point(size = 2, shape = 21, stroke = 0.5,
fill = 'gray', color = 'black') +
theme(text = element_text(size = 12),
legend.position = "none") +
annotate('text',
label = sprintf('r = %s\nRMSE = %.2f', r, rmse),
hjust = 0, # left align
x = breaks[1], y = breaks[length(breaks)] - 2) +
scale_x_continuous(name = xlabel,
breaks = breaks,
limits = c(breaks[1], breaks[length(breaks)])) +
scale_y_continuous(name = 'responsibility judgment',
breaks = breaks,
limits = c(breaks[1], breaks[length(breaks)])) +
coord_fixed(ratio = 1)
return(g)
}
= readPNG(paste0(figures_dir, 'icons/agent.png')) %>%
agent_icon rasterGrob(interpolate = T)
= readPNG(paste0(figures_dir, 'icons/object.png')) %>%
object_icon rasterGrob(interpolate = T)
= read_csv(paste0(data_dir, 'experiment1_agent/trial_info.csv'),
info.exp1.agent show_col_types = F) %>%
pivot_longer(cols = !trial,
names_to = c('.value', 'craft'),
names_pattern = '(.+)_(.)')
= read_csv(paste0(data_dir, 'experiment1_agent/trials.csv'),
data.exp1.agent show_col_types = F) %>%
select(-error, -proliferate.condition) %>%
rename(id = workerid,
b = resp_b, c = resp_c, t = resp_t) %>%
# filter by exclusion trial X1
pivot_wider(names_from = trial, values_from = c(c, b, t)) %>%
rowwise(id) %>%
filter(max(c_X1, b_X1, t_X1) - min(c_X1, b_X1, t_X1) < 30) %>%
# pivot back to long form
pivot_longer(cols = !id,
names_to = 'trial',
values_to = 'resp') %>%
separate(col = trial,
into = c('craft', 'trial'),
sep = '_') %>%
# ignore exclusion trial and practice trials
filter(!(trial %in% c("X1", 1, 2))) %>%
# merge with trial info
merge(info.exp1.agent,
by = c('trial', 'craft')) %>%
# factor variables for plotting
mutate(id = factor(id),
plot_id = as.factor(as.integer(id)),
craft = factor(craft))
Number of participants:
length(unique(data.exp1.agent$id))
## [1] 50
Participants were asked: “What factors influenced how you decided to respond? Do you have any questions or comments regarding the experiment?”
= read_csv(paste0(data_dir, 'experiment1_agent/participants.csv'),
participants.exp1.agent show_col_types = F) %>%
select(-error, -proliferate.condition) %>%
rename(id = workerid) %>%
filter(id %in% data.exp1.agent$id) %>%
mutate(id = factor(id)) %>%
left_join(data.exp1.agent %>%
distinct(id, plot_id),
by = 'id')
%>%
participants.exp1.agent select(plot_id, feedback) %>%
datatable()
= read_csv(paste0(data_dir, 'experiment1_object/trial_info.csv'),
info.exp1.object show_col_types = F) %>%
pivot_longer(cols = !trial,
names_to = c('.value', 'color'),
names_pattern = '(.+)_(.)')
= read_csv(paste0(data_dir, 'experiment1_object/trials.csv'),
data.exp1.object show_col_types = F) %>%
select(-error, -proliferate.condition) %>%
rename(id = workerid,
y = resp_y, g = resp_g, b = resp_b) %>%
# filter by exclusion trial X1
pivot_wider(names_from = trial, values_from = c(y, g, b)) %>%
rowwise(id) %>%
filter(max(y_X1, g_X1, b_X1) - min(y_X1, g_X1, b_X1) < 30) %>%
# pivot back to long form
pivot_longer(cols = !id,
names_to = 'trial',
values_to = 'resp') %>%
separate(col = trial,
into = c('color', 'trial'),
sep = '_') %>%
# ignore exclusion trial and practice trials
filter(!(trial %in% c("X1", 1, 2))) %>%
# merge with trial info
merge(info.exp1.object,
by = c('trial', 'color')) %>%
# factor variables for plotting
mutate(id = factor(id),
plot_id = as.factor(as.integer(id)),
color = factor(color))
Number of participants:
length(unique(data.exp1.object$id))
## [1] 50
Participants were asked: “What factors influenced how you decided to respond? Do you have any questions or comments regarding the experiment?”
= read_csv(paste0(data_dir, 'experiment1_object/participants.csv'),
participants.exp1.object show_col_types = F) %>%
select(-error, -proliferate.condition) %>%
rename(id = workerid) %>%
filter(id %in% data.exp1.object$id) %>%
mutate(id = factor(id)) %>%
left_join(data.exp1.object %>%
distinct(id, plot_id),
by = 'id')
%>%
participants.exp1.object select(plot_id, feedback) %>%
datatable()
%>%
participants.exp1.agent rbind(participants.exp1.object) %>%
print_demographics()
## # A tibble: 4 × 2
## gender n
## <chr> <int>
## 1 Female 34
## 2 Male 63
## 3 Non-binary 1
## 4 <NA> 2
## [1] "age:"
## [1] 24.84
## [1] 5.814854
## # A tibble: 5 × 2
## race n
## <chr> <int>
## 1 Asian 7
## 2 Black 7
## 3 Multiracial 3
## 4 White 64
## 5 <NA> 19
## # A tibble: 3 × 2
## ethnicity n
## <chr> <int>
## 1 Hispanic 29
## 2 Non-Hispanic 70
## 3 <NA> 1
## [1] "time taken (min):"
## [1] 9.846081
## [1] 5.648796
= data.frame()
rmse.exp1.agent_uniform for (p in seq(0, 1, by = 0.05)) {
= update_search_one(1, 'agent', p)
rmse.exp1.agent_uniform
}colnames(rmse.exp1.agent_uniform) = c('p', 'rmse')
# get optimal values
= rmse.exp1.agent_uniform[which.min(rmse.exp1.agent_uniform$rmse),]$p
p.exp1.agent
# create plot
= plot_search_one(1, 'agent')
plot_rmse.exp1.agent
# update response data
= data.exp1.agent %>%
data.exp1.agent mutate(prob = 1 - (1 - p.exp1.agent)^num)
Fitting baseline model:
= brm(
fit.exp1.agent_baseline formula = resp ~ 1 + (1 | id),
data = data.exp1.agent,
iter = 8000,
seed = 1,
file = "cache/fit.exp1.agent_baseline")
Fitting counterfactual replacement model (CRM):
= brm(
fit.exp1.agent_crm formula = resp ~ 1 + prob + (1 + prob | id),
data = data.exp1.agent,
iter = 8000,
seed = 1,
file = "cache/fit.exp1.agent_crm")
Comparing models with leave-one-out cross-validation:
= add_criterion(
fit.exp1.agent_baseline
fit.exp1.agent_baseline,criterion = "loo",
reloo = T,
file = "cache/fit.exp1.agent_baseline")
= add_criterion(
fit.exp1.agent_crm
fit.exp1.agent_crm,criterion = "loo",
reloo = T,
file = "cache/fit.exp1.agent_crm")
loo_compare(fit.exp1.agent_baseline,
fit.exp1.agent_crm)
## elpd_diff se_diff
## fit.exp1.agent_crm 0.0 0.0
## fit.exp1.agent_baseline -1591.1 74.2
= c(prior(normal(0, 20), class = 'b', ub = 0))
prior
# initialize the models
= brm(
fit.exp1.agent_baseline_individual formula = resp ~ 1,
data = data.exp1.agent %>%
filter(plot_id == 1),
seed = 1,
file = "cache/fit.exp1.agent_baseline_individual")
= brm(
fit.exp1.agent_crm_individual formula = resp ~ 1 + prob,
data = data.exp1.agent %>%
filter(plot_id == 1),
prior = prior,
seed = 1,
file = "cache/fit.exp1.agent_crm_individual")
# update model fits for each participant
= data.exp1.agent %>%
data.exp1.agent_model_fits group_by(plot_id) %>%
nest() %>%
ungroup() %>%
mutate(fit_baseline = map(.x = data,
.f = ~ update(fit.exp1.agent_baseline_individual,
newdata = .x,
seed = 1)),
fit_crm = map(.x = data,
.f = ~ update(fit.exp1.agent_crm_individual,
newdata = .x,
seed = 1))) %>%
mutate(fit_baseline = map(.x = fit_baseline,
.f = ~ add_criterion(.x, criterion = "loo")),
fit_crm = map(.x = fit_crm,
.f = ~ add_criterion(.x, criterion = "loo")),
model_comparison = pmap(.l = list(baseline = fit_baseline,
crm = fit_crm),
.f = ~ loo_compare(..1, ..2)),
best_model = map_chr(.x = model_comparison,
.f = ~ rownames(.) %>%
1]),
.[best_model = factor(best_model,
levels = c("..1", "..2"),
labels = c("baseline",
"crm")))
save(list = c("data.exp1.agent_model_fits"),
file = paste0(data_dir, 'experiment1_agent/model-fits.RData'))
load(file = paste0(data_dir, 'experiment1_agent/model-fits.RData'))
%>%
data.exp1.agent_model_fits count(best_model) %>%
arrange(desc(n))
## # A tibble: 2 × 2
## best_model n
## <fct> <int>
## 1 crm 32
## 2 baseline 18
= data.frame()
rmse.exp1.object_uniform for (p in seq(0, 1, by = 0.05)) {
= update_search_one(1, 'object', p)
rmse.exp1.object_uniform
}colnames(rmse.exp1.object_uniform) = c('p', 'rmse')
# get optimal values
= rmse.exp1.object_uniform[which.min(rmse.exp1.object_uniform$rmse),]$p
p.exp1.object
# create plot
= plot_search_one(1, 'object')
plot_rmse.exp1.object
# update response data
= data.exp1.object %>%
data.exp1.object mutate(prob = 1 - (1 - p.exp1.object)^num)
Fitting baseline model:
= brm(
fit.exp1.object_baseline formula = resp ~ 1 + (1 | id),
data = data.exp1.object,
iter = 8000,
seed = 1,
file = "cache/fit.exp1.object_baseline")
Fitting counterfactual replacement model (CRM):
= brm(
fit.exp1.object_crm formula = resp ~ 1 + prob + (1 + prob | id),
data = data.exp1.object,
iter = 8000,
seed = 1,
file = "cache/fit.exp1.object_crm")
Comparing models with leave-one-out cross-validation:
= add_criterion(
fit.exp1.object_baseline
fit.exp1.object_baseline,criterion = "loo",
reloo = T,
file = "cache/fit.exp1.object_baseline")
= add_criterion(
fit.exp1.object_crm
fit.exp1.object_crm,criterion = "loo",
reloo = T,
file = "cache/fit.exp1.object_crm")
loo_compare(fit.exp1.object_baseline,
fit.exp1.object_crm)
## elpd_diff se_diff
## fit.exp1.object_crm 0.0 0.0
## fit.exp1.object_baseline -1778.2 80.2
= c(prior(normal(0, 20), class = 'b', ub = 0))
prior
# initialize the models
= brm(
fit.exp1.object_baseline_individual formula = resp ~ 1,
data = data.exp1.object %>%
filter(plot_id == 1),
seed = 1,
file = "cache/fit.exp1.object_baseline_individual")
= brm(
fit.exp1.object_crm_individual formula = resp ~ 1 + prob,
data = data.exp1.object %>%
filter(plot_id == 1),
prior = prior,
seed = 1,
file = "cache/fit.exp1.object_crm_individual")
# update model fits for each participant
= data.exp1.object %>%
data.exp1.object_model_fits group_by(plot_id) %>%
nest() %>%
ungroup() %>%
mutate(fit_baseline = map(.x = data,
.f = ~ update(fit.exp1.object_baseline_individual,
newdata = .x,
seed = 1)),
fit_crm = map(.x = data,
.f = ~ update(fit.exp1.object_crm_individual,
newdata = .x,
seed = 1))) %>%
mutate(fit_baseline = map(.x = fit_baseline,
.f = ~ add_criterion(.x, criterion = "loo")),
fit_crm = map(.x = fit_crm,
.f = ~ add_criterion(.x, criterion = "loo")),
model_comparison = pmap(.l = list(baseline = fit_baseline,
crm = fit_crm),
.f = ~ loo_compare(..1, ..2)),
best_model = map_chr(.x = model_comparison,
.f = ~ rownames(.) %>%
1]),
.[best_model = factor(best_model,
levels = c("..1", "..2"),
labels = c("baseline",
"crm")))
save(list = c("data.exp1.object_model_fits"),
file = paste0(data_dir, 'experiment1_object/model-fits.RData'))
load(file = paste0(data_dir, 'experiment1_object/model-fits.RData'))
%>%
data.exp1.object_model_fits count(best_model) %>%
arrange(desc(n))
## # A tibble: 2 × 2
## best_model n
## <fct> <int>
## 1 crm 37
## 2 baseline 13
+ plot_spacer() + plot_rmse.exp1.object +
plot_rmse.exp1.agent plot_annotation(tag_levels = 'A') +
plot_layout(widths = c(4, 1, 4)) &
theme(plot.tag = element_text(size = 24))
# ggsave(paste0(figures_dir, '/experiment1/p_search.pdf'), width = 9, height = 4)
= data.exp1.agent %>%
data.exp1.agent cbind(fit.exp1.agent_baseline %>%
fitted(newdata = data.exp1.agent,
re_formula = NA) %>%
as_tibble() %>%
mutate(pred_baseline = Estimate) %>%
select(pred_baseline)) %>%
cbind(fit.exp1.agent_crm %>%
fitted(newdata = data.exp1.agent,
re_formula = NA) %>%
as_tibble() %>%
mutate(pred_crm = Estimate) %>%
select(pred_crm))
= data.exp1.agent %>%
data.exp1.agent_means group_by(trial, craft) %>%
summarise(resp_mean = mean(resp),
resp_low = smean.cl.boot(resp)[2],
resp_high = smean.cl.boot(resp)[3]) %>%
merge(info.exp1.agent, by = c('trial', 'craft')) %>%
left_join(data.exp1.agent %>%
distinct(trial, craft, pred_baseline, pred_crm),
by = c('trial', 'craft'))
= data.exp1.object %>%
data.exp1.object cbind(fit.exp1.object_baseline %>%
fitted(newdata = data.exp1.object ,
re_formula = NA) %>%
as_tibble() %>%
mutate(pred_baseline = Estimate) %>%
select(pred_baseline)) %>%
cbind(fit.exp1.object_crm %>%
fitted(newdata = data.exp1.object ,
re_formula = NA) %>%
as_tibble() %>%
mutate(pred_crm = Estimate) %>%
select(pred_crm))
= data.exp1.object %>%
data.exp1.object_means group_by(trial, color) %>%
summarise(resp_mean = mean(resp),
resp_low = smean.cl.boot(resp)[2],
resp_high = smean.cl.boot(resp)[3]) %>%
merge(info.exp1.object, by = c('trial', 'color')) %>%
left_join(data.exp1.object %>%
distinct(trial, color, pred_baseline, pred_crm),
by = c('trial', 'color'))
= c('baseline' = 'Contribution model',
model_labels.exp1 'crm' = 'CRM')
= c('baseline', 'crm') model_order.exp1
= make_scatter(
scatter.exp1.agent_crm 'crm', 'CRM', seq(0, 100, 20))
data.exp1.agent_means, = make_scatter(
scatter.exp1.object_crm 'crm', 'CRM', seq(0, 100, 20))
data.exp1.object_means,
+ inset_element(agent_icon, 0.85, 0.01, 1, 0.25) +
scatter.exp1.agent_crm + inset_element(object_icon, 0.85, 0.01, 1, 0.15) +
scatter.exp1.object_crm plot_layout(ncol = 2) +
plot_annotation(tag_levels = list(c('A', '', 'B', ''))) &
theme(plot.title = element_text(hjust = 0.5),
plot.tag = element_text(size = 24))
# ggsave(paste0(figures_dir, 'experiment1/scatter.pdf'), width = 8, height = 4)
= function(data, fill) {
barplot.exp1 = ggplot(data = data,
g mapping = aes(x = num,
y = resp)) +
stat_summary(fun = "mean",
geom = "bar",
color = 'black',
fill = fill,
width = 0.8) +
stat_summary(fun.data = "mean_cl_boot",
geom = "linerange",
size = 1) +
stat_summary(mapping = aes(y = pred,
fill = model,
shape = model,
size = model),
fun = 'mean',
geom = 'point',
color = 'black',
position = position_dodge(width = 0.5)) +
theme(text = element_text(size = 16),
legend.position = 'bottom',
legend.direction = 'horizontal',
legend.title = element_blank(),
#axis.text.x = element_blank(),
axis.line.x = element_blank(),
axis.ticks.x = element_blank(),
strip.background = element_blank(),
strip.text = element_blank(),
panel.grid.major.y = element_line()) +
scale_fill_manual(values = c('baseline' = 'black',
'crm' = 'white'),
labels = model_labels.exp1,
name = 'model') +
scale_size_manual(values = c('baseline' = 2.5,
'crm' = 3),
labels = model_labels.exp1,
name = 'model') +
scale_shape_manual(values = c('baseline' = 21, # circle
'crm' = 23), # diamond
labels = model_labels.exp1,
name = 'model') +
scale_y_continuous(name = 'responsibility judgment',
breaks = seq(0, 100, 20),
expand = expansion(mult = 0.01)) +
xlab('number of replacements') +
coord_cartesian(clip = 'off', ylim = c(0, 100))
return(g)
}
= barplot.exp1(
barplot.exp1.agent data = data.exp1.agent %>%
pivot_longer(cols = starts_with('pred'),
names_to = 'model',
values_to = 'pred') %>%
mutate(model = factor(sub('^pred_', '', model),
levels = model_order.exp1)),
fill = 'gray90'
)
= barplot.exp1(
barplot.exp1.object data = data.exp1.object %>%
pivot_longer(cols = starts_with('pred'),
names_to = 'model',
values_to = 'pred') %>%
mutate(model = factor(sub('^pred_', '', model),
levels = model_order.exp1)),
fill = 'gray75'
)
+ inset_element(agent_icon, 0.85, 0.8, 1, 0.95,
barplot.exp1.agent align_to = 'full') +
+ inset_element(object_icon, 0.85, 0.9, 1, 1) +
barplot.exp1.object plot_layout(nrow = 1,
guides = 'collect') +
plot_annotation(tag_levels = list(c('A', '', 'B', ''))) &
theme(plot.tag = element_text(size = 24),
legend.position = 'bottom')
# ggsave(paste0(figures_dir, 'experiment1/bar.pdf'), width = 10, height = 4.5)
= read_csv(paste0(data_dir, 'experiment2_agent/trial_info.csv'),
info.exp2.agent show_col_types = F) %>%
pivot_longer(cols = !trial,
names_to = c('.value', 'craft'),
names_pattern = '(.+)_(.)') %>%
mutate(num = low + high)
= read_csv(paste0(data_dir, 'experiment2_agent/trials.csv'),
data.exp2.agent show_col_types = F) %>%
select(-error, -proliferate.condition) %>%
rename(id = workerid,
b = resp_b, c = resp_c, t = resp_t) %>%
# filter by exclusion trial X1
pivot_wider(names_from = trial, values_from = c(c, b, t)) %>%
rowwise(id) %>%
# pivot back to long form
pivot_longer(cols = !id,
names_to = 'trial',
values_to = 'resp') %>%
separate(col = trial,
into = c('craft', 'trial'),
sep = '_') %>%
# ignore exclusion trial and practice trials
filter(!(trial %in% c("X1", 1, 2))) %>%
# merge with trial info
merge(info.exp2.agent,
by = c('trial', 'craft')) %>%
# factor variables for plotting
mutate(id = factor(id),
plot_id = as.factor(as.integer(id)),
craft = factor(craft))
Number of participants:
length(unique(data.exp2.agent$id))
## [1] 50
Participants were asked: “What factors influenced how you decided to respond? Do you have any questions or comments regarding the experiment?”
= read_csv(paste0(data_dir, 'experiment2_agent/participants.csv'),
participants.exp2.agent show_col_types = F) %>%
select(-error, -proliferate.condition) %>%
rename(id = workerid) %>%
filter(id %in% data.exp2.agent$id) %>%
mutate(id = factor(id)) %>%
left_join(data.exp2.agent %>%
distinct(id, plot_id),
by = 'id')
%>%
participants.exp2.agent select(plot_id, feedback) %>%
datatable()
= read_csv(paste0(data_dir, 'experiment2_object/trial_info.csv'),
info.exp2.object show_col_types = F) %>%
pivot_longer(cols = !trial,
names_to = c('.value', 'color'),
names_pattern = '(.+)_(.)') %>%
mutate(num = low + high)
= read_csv(paste0(data_dir, 'experiment2_object/trials.csv'),
data.exp2.object show_col_types = F) %>%
select(-error, -proliferate.condition) %>%
rename(id = workerid,
y = resp_y, g = resp_g, b = resp_b) %>%
# filter by exclusion trial X1
pivot_wider(names_from = trial, values_from = c(y, g, b)) %>%
rowwise(id) %>%
filter(max(y_X1, g_X1, b_X1) - min(y_X1, g_X1, b_X1) < 30) %>%
# pivot back to long form
pivot_longer(cols = !id,
names_to = 'trial',
values_to = 'resp') %>%
separate(col = trial,
into = c('color', 'trial'),
sep = '_') %>%
# ignore exclusion trial and practice trials
filter(!(trial %in% c("X1", 1, 2))) %>%
# merge with trial info
merge(info.exp2.object,
by = c('trial', 'color')) %>%
# factor variables for plotting
mutate(id = factor(id),
plot_id = as.factor(as.integer(id)),
color = factor(color))
Number of participants:
length(unique(data.exp2.object$id))
## [1] 50
Participants were asked: “What factors influenced how you decided to respond? Do you have any questions or comments regarding the experiment?”
= read_csv(paste0(data_dir, 'experiment2_object/participants.csv'),
participants.exp2.object show_col_types = F) %>%
select(-error, -proliferate.condition) %>%
rename(id = workerid) %>%
filter(id %in% data.exp2.object$id) %>%
mutate(id = factor(id)) %>%
left_join(data.exp2.object %>%
distinct(id, plot_id),
by = 'id')
%>%
participants.exp2.object select(plot_id, feedback) %>%
datatable()
%>%
participants.exp2.agent rbind(participants.exp2.object) %>%
print_demographics()
## # A tibble: 3 × 2
## gender n
## <chr> <int>
## 1 Female 40
## 2 Male 58
## 3 Non-binary 2
## [1] "age:"
## [1] 24.86
## [1] 6.446391
## # A tibble: 6 × 2
## race n
## <chr> <int>
## 1 American Indian/Alaska Native 2
## 2 Asian 5
## 3 Black 7
## 4 Multiracial 3
## 5 White 58
## 6 <NA> 25
## # A tibble: 3 × 2
## ethnicity n
## <chr> <int>
## 1 Hispanic 40
## 2 Non-Hispanic 58
## 3 <NA> 2
## [1] "time taken (min):"
## [1] 12.33368
## [1] 6.544082
Uniform probabilities:
= data.frame()
rmse.exp2.agent_uniform for (p in seq(0, 1, by = 0.05)) {
= update_search_one(2, 'agent', p)
rmse.exp2.agent_uniform
}colnames(rmse.exp2.agent_uniform) = c('p', 'rmse')
# get optimal values
= rmse.exp2.agent_uniform[which.min(rmse.exp2.agent_uniform$rmse),]$p
p.exp2.agent
# create plot
= plot_search_one(2, 'agent')
plot_rmse.exp2.agent_uniform
# update response data
= data.exp2.agent %>%
data.exp2.agent mutate(prob_uniform = 1 - (1 - p.exp2.agent)^num)
Varying probabilities:
= data.frame()
rmse.exp2.agent_full for (p_low in seq(0, 1, by = 0.05)) {
for (p_high in seq(p_low, 1, by = 0.05)) {
= update_search_two(2, 'agent', p_low, p_high)
rmse.exp2.agent_full
}
}colnames(rmse.exp2.agent_full) = c('p_low', 'p_high', 'rmse')
# get optimal values
= rmse.exp2.agent_full[which.min(rmse.exp2.agent_full$rmse),]$p_low
p.exp2.agent_low = rmse.exp2.agent_full[which.min(rmse.exp2.agent_full$rmse),]$p_high
p.exp2.agent_high
# create plot
= plot_search_two(2, 'agent')
plot_rmse.exp2.agent_full
# update response data
= data.exp2.agent %>%
data.exp2.agent mutate(prob_full = 1 - (1 - p.exp2.agent_low)^low * (1 - p.exp2.agent_high)^high)
Fitting baseline model:
= brm(
fit.exp2.agent_baseline formula = resp ~ 1 + (1 | id),
data = data.exp2.agent,
iter = 8000,
seed = 1,
file = "cache/fit.exp2.agent_baseline")
Fitting CRM (uniform):
= brm(
fit.exp2.agent_crm_uniform formula = resp ~ 1 + prob_uniform + (1 + prob_uniform | id),
data = data.exp2.agent,
iter = 8000,
seed = 1,
file = "cache/fit.exp2.agent_crm_uniform")
Fitting CRM (full):
= brm(
fit.exp2.agent_crm_full formula = resp ~ 1 + prob_full + (1 + prob_full | id),
data = data.exp2.agent,
iter = 8000,
seed = 1,
file = "cache/fit.exp2.agent_crm_full")
Comparing models with leave-one-out cross-validation:
= add_criterion(
fit.exp2.agent_baseline
fit.exp2.agent_baseline,criterion = "loo",
reloo = T,
file = "cache/fit.exp2.agent_baseline")
= add_criterion(
fit.exp2.agent_crm_uniform
fit.exp2.agent_crm_uniform,criterion = "loo",
reloo = T,
file = "cache/fit.exp2.agent_crm_uniform")
= add_criterion(
fit.exp2.agent_crm_full
fit.exp2.agent_crm_full,criterion = "loo",
reloo = T,
file = "cache/fit.exp2.agent_crm_full")
loo_compare(fit.exp2.agent_baseline,
fit.exp2.agent_crm_uniform, fit.exp2.agent_crm_full)
## elpd_diff se_diff
## fit.exp2.agent_crm_full 0.0 0.0
## fit.exp2.agent_crm_uniform -411.7 35.9
## fit.exp2.agent_baseline -586.4 40.2
= c(prior(normal(0, 20), class = 'b', ub = 0))
prior
= brm(
fit.exp2.agent_baseline_individual formula = resp ~ 1,
data = data.exp2.agent %>%
filter(plot_id == 1),
seed = 1,
file = "cache/fit.exp2.agent_baseline_individual")
= brm(
fit.exp2.agent_crm_uniform_individual formula = resp ~ 1 + prob_uniform,
data = data.exp2.agent %>%
filter(plot_id == 1),
prior = prior,
seed = 1,
file = "cache/fit.exp2.agent_crm_uniform_individual")
= brm(
fit.exp2.agent_crm_full_individual formula = resp ~ 1 + prob_full,
data = data.exp2.agent %>%
filter(plot_id == 1),
prior = prior,
seed = 1,
file = "cache/fit.exp2.agent_crm_full_individual")
# update model fits for each participant
= data.exp2.agent %>%
data.exp2.agent_model_fits group_by(plot_id) %>%
nest() %>%
ungroup() %>%
mutate(fit_baseline = map(.x = data,
.f = ~ update(fit.exp2.agent_baseline_individual,
newdata = .x,
seed = 1)),
fit_crm_uniform = map(.x = data,
.f = ~ update(fit.exp2.agent_crm_uniform_individual,
newdata = .x,
seed = 1)),
fit_crm_full = map(.x = data,
.f = ~ update(fit.exp2.agent_crm_full_individual,
newdata = .x,
seed = 1))) %>%
mutate(fit_baseline = map(.x = fit_baseline,
.f = ~ add_criterion(.x, criterion = "loo")),
fit_crm_uniform = map(.x = fit_crm_uniform,
.f = ~ add_criterion(.x, criterion = "loo")),
fit_crm_full = map(.x = fit_crm_full,
.f = ~ add_criterion(.x, criterion = "loo")),
model_comparison = pmap(.l = list(baseline = fit_baseline,
crm_uniform = fit_crm_uniform,
crm_full = fit_crm_full),
.f = ~ loo_compare(..1, ..2, ..3)),
best_model = map_chr(.x = model_comparison,
.f = ~ rownames(.) %>%
1]),
.[best_model = factor(best_model,
levels = c("..1", "..2", "..3"),
labels = c("baseline",
"crm_uniform",
"crm_full")))
save(list = c("data.exp2.agent_model_fits"),
file = paste0(data_dir, 'experiment2_agent/model-fits.RData'))
load(file = paste0(data_dir, 'experiment2_agent/model-fits.RData'))
%>%
data.exp2.agent_model_fits count(best_model) %>%
arrange(desc(n))
## # A tibble: 3 × 2
## best_model n
## <fct> <int>
## 1 crm_full 26
## 2 baseline 17
## 3 crm_uniform 7
Uniform probabilities:
= data.frame()
rmse.exp2.object_uniform for (p in seq(0, 1, by = 0.05)) {
= update_search_one(2, 'object', p)
rmse.exp2.object_uniform
}colnames(rmse.exp2.object_uniform) = c('p', 'rmse')
# get optimal values
= rmse.exp2.object_uniform[which.min(rmse.exp2.object_uniform$rmse),]$p
p.exp2.object
# create plot
= plot_search_one(2, 'object')
plot_rmse.exp2.object_uniform
# update response data
= data.exp2.object %>%
data.exp2.object mutate(prob_uniform = 1 - (1 - p.exp2.object)^num)
Varying probabilities:
= data.frame()
rmse.exp2.object_full for (p_low in seq(0, 1, by = 0.05)) {
for (p_high in seq(p_low, 1, by = 0.05)) {
= update_search_two(2, 'object', p_low, p_high)
rmse.exp2.object_full
}
}colnames(rmse.exp2.object_full) = c('p_low', 'p_high', 'rmse')
# get optimal values
= rmse.exp2.object_full[which.min(rmse.exp2.object_full$rmse),]$p_low
p.exp2.object_low = rmse.exp2.object_full[which.min(rmse.exp2.object_full$rmse),]$p_high
p.exp2.object_high
# create plot
= plot_search_two(2, 'object')
plot_rmse.exp2.object_full
# update response data
= data.exp2.object %>%
data.exp2.object mutate(prob_full = 1 - (1 - p.exp2.object_low)^low * (1 - p.exp2.object_high)^high)
Fitting baseline model:
= brm(
fit.exp2.object_baseline formula = resp ~ 1 + (1 | id),
data = data.exp2.object,
iter = 8000,
seed = 1,
file = "cache/fit.exp2.object_baseline")
Fitting CRM (uniform):
= brm(
fit.exp2.object_crm_uniform formula = resp ~ 1 + prob_uniform + (1 + prob_uniform | id),
data = data.exp2.object,
iter = 8000,
seed = 1,
file = "cache/fit.exp2.object_crm_uniform")
Fitting CRM (full):
= brm(
fit.exp2.object_crm_full formula = resp ~ 1 + prob_full + (1 + prob_full | id),
data = data.exp2.object,
iter = 8000,
seed = 1,
file = "cache/fit.exp2.object_crm_full")
Comparing models with leave-one-out cross-validation:
= add_criterion(
fit.exp2.object_baseline
fit.exp2.object_baseline,criterion = "loo",
reloo = T,
file = "cache/fit.exp2.object_baseline")
= add_criterion(
fit.exp2.object_crm_uniform
fit.exp2.object_crm_uniform,criterion = "loo",
reloo = T,
file = "cache/fit.exp2.object_crm_uniform")
= add_criterion(
fit.exp2.object_crm_full
fit.exp2.object_crm_full,criterion = "loo",
reloo = T,
file = "cache/fit.exp2.object_crm_full")
loo_compare(fit.exp2.object_baseline,
fit.exp2.object_crm_uniform, fit.exp2.object_crm_full)
## elpd_diff se_diff
## fit.exp2.object_crm_full 0.0 0.0
## fit.exp2.object_crm_uniform -61.8 6.8
## fit.exp2.object_baseline -307.3 24.8
= c(prior(normal(0, 20), class = 'b', ub = 0))
prior
= brm(
fit.exp2.object_baseline_individual formula = resp ~ 1,
data = data.exp2.object %>%
filter(plot_id == 1),
seed = 1,
file = "cache/fit.exp2.object_baseline_individual")
= brm(
fit.exp2.object_crm_uniform_individual formula = resp ~ 1 + prob_uniform,
data = data.exp2.object %>%
filter(plot_id == 1),
prior = prior,
seed = 1,
file = "cache/fit.exp2.object_crm_uniform_individual")
= brm(
fit.exp2.object_crm_full_individual formula = resp ~ 1 + prob_full,
data = data.exp2.object %>%
filter(plot_id == 1),
prior = prior,
seed = 1,
file = "cache/fit.exp2.object_crm_full_individual")
# update model fits for each participant
= data.exp2.object %>%
data.exp2.object_model_fits group_by(plot_id) %>%
nest() %>%
ungroup() %>%
mutate(fit_baseline = map(.x = data,
.f = ~ update(fit.exp2.object_baseline_individual,
newdata = .x,
seed = 1)),
fit_crm_uniform = map(.x = data,
.f = ~ update(fit.exp2.object_crm_uniform_individual,
newdata = .x,
seed = 1)),
fit_crm_full = map(.x = data,
.f = ~ update(fit.exp2.object_crm_full_individual,
newdata = .x,
seed = 1))) %>%
mutate(fit_baseline = map(.x = fit_baseline,
.f = ~ add_criterion(.x, criterion = "loo")),
fit_crm_uniform = map(.x = fit_crm_uniform,
.f = ~ add_criterion(.x, criterion = "loo")),
fit_crm_full = map(.x = fit_crm_full,
.f = ~ add_criterion(.x, criterion = "loo")),
model_comparison = pmap(.l = list(baseline = fit_baseline,
crm_uniform = fit_crm_uniform,
crm_full = fit_crm_full),
.f = ~ loo_compare(..1, ..2, ..3)),
best_model = map_chr(.x = model_comparison,
.f = ~ rownames(.) %>%
1]),
.[best_model = factor(best_model,
levels = c("..1", "..2", "..3"),
labels = c("baseline",
"crm_uniform",
"crm_full")))
save(list = c("data.exp2.object_model_fits"),
file = paste0(data_dir, 'experiment2_object/model-fits.RData'))
load(file = paste0(data_dir, 'experiment2_object/model-fits.RData'))
%>%
data.exp2.object_model_fits count(best_model) %>%
arrange(desc(n))
## # A tibble: 3 × 2
## best_model n
## <fct> <int>
## 1 crm_full 21
## 2 baseline 16
## 3 crm_uniform 13
+ plot_spacer() + plot_rmse.exp2.object_uniform +
plot_rmse.exp2.agent_uniform plot_annotation(tag_levels = 'A') +
plot_layout(widths = c(4, 1, 4)) &
theme(plot.tag = element_text(size = 24))
# ggsave(paste0(figures_dir, 'experiment2/p_search_uniform.pdf'), width = 9, height = 4)
+ plot_spacer() + plot_rmse.exp2.object_full +
plot_rmse.exp2.agent_full plot_annotation(tag_levels = 'A') +
plot_layout(widths = c(4, 1, 4)) &
theme(plot.tag = element_text(size = 24))
# ggsave(paste0(figures_dir, 'experiment2/p_search_full.pdf'), width = 9, height = 4)
= data.exp2.agent %>%
data.exp2.agent cbind(fit.exp2.agent_baseline %>%
fitted(newdata = data.exp2.agent,
re_formula = NA) %>%
as_tibble() %>%
mutate(pred_baseline = Estimate) %>%
select(pred_baseline)) %>%
cbind(fit.exp2.agent_crm_uniform %>%
fitted(newdata = data.exp2.agent,
re_formula = NA) %>%
as_tibble() %>%
mutate(pred_crm_uniform = Estimate) %>%
select(pred_crm_uniform)) %>%
cbind(fit.exp2.agent_crm_full %>%
fitted(newdata = data.exp2.agent,
re_formula = NA) %>%
as_tibble() %>%
mutate(pred_crm_full = Estimate) %>%
select(pred_crm_full))
= data.exp2.agent %>%
data.exp2.agent_means group_by(trial, craft) %>%
summarise(resp_mean = mean(resp),
resp_low = smean.cl.boot(resp)[2],
resp_high = smean.cl.boot(resp)[3]) %>%
merge(info.exp2.agent, by = c('trial', 'craft')) %>%
left_join(data.exp2.agent %>%
distinct(trial, craft, pred_baseline,
pred_crm_uniform, pred_crm_full),by = c('trial', 'craft'))
= data.exp2.object %>%
data.exp2.object cbind(fit.exp2.object_baseline %>%
fitted(newdata = data.exp2.object ,
re_formula = NA) %>%
as_tibble() %>%
mutate(pred_baseline = Estimate) %>%
select(pred_baseline)) %>%
cbind(fit.exp2.object_crm_uniform %>%
fitted(newdata = data.exp2.object ,
re_formula = NA) %>%
as_tibble() %>%
mutate(pred_crm_uniform = Estimate) %>%
select(pred_crm_uniform)) %>%
cbind(fit.exp2.object_crm_full %>%
fitted(newdata = data.exp2.object ,
re_formula = NA) %>%
as_tibble() %>%
mutate(pred_crm_full = Estimate) %>%
select(pred_crm_full))
= data.exp2.object %>%
data.exp2.object_means group_by(trial, color) %>%
summarise(resp_mean = mean(resp),
resp_low = smean.cl.boot(resp)[2],
resp_high = smean.cl.boot(resp)[3]) %>%
merge(info.exp2.object, by = c('trial', 'color')) %>%
left_join(data.exp2.object %>%
distinct(trial, color, pred_baseline,
pred_crm_uniform, pred_crm_full),by = c('trial', 'color'))
= info.exp2.agent %>%
labels.exp2 distinct(low, high, num) %>%
arrange(num, high) %>%
mutate(condition = NA,
index = 1:n(),
grob = map2(.x = low,
.y = high,
.f = ~ readPNG(paste0(figures_dir, 'experiment2/sets/',
'.png'))))
.x, .y,
= c('baseline' = 'Contribution model',
model_labels.exp2 'crm_uniform' = 'CRM (uniform)',
'crm_full' = 'CRM (full)')
= c('baseline', 'crm_uniform', 'crm_full') model_order.exp2
= make_scatter(
scatter.exp2.agent_uniform 'crm_uniform', 'CRM (uniform)', seq(40, 100, 20))
data.exp2.agent_means, = make_scatter(
scatter.exp2.agent_full 'crm_full', 'CRM (full)', seq(40, 100, 20))
data.exp2.agent_means,
= make_scatter(
scatter.exp2.object_uniform 'crm_uniform', 'CRM (uniform)', seq(40, 100, 20))
data.exp2.object_means, = make_scatter(
scatter.exp2.object_full 'crm_full', 'CRM (full)', seq(40, 100, 20))
data.exp2.object_means,
+ inset_element(agent_icon, 0.85, 0.01, 1, 0.25) +
scatter.exp2.agent_uniform + inset_element(agent_icon, 0.85, 0.01, 1, 0.25) +
scatter.exp2.agent_full + inset_element(object_icon, 0.85, 0.01, 1, 0.15) +
scatter.exp2.object_uniform + inset_element(object_icon, 0.85, 0.01, 1, 0.15) +
scatter.exp2.object_full plot_layout(ncol = 2) +
plot_annotation(tag_levels = list(c('A', '', '', '',
'B', '', '', ''))) &
theme(plot.title = element_text(hjust = 0.5),
plot.tag = element_text(size = 24))
# ggsave(paste0(figures_dir, 'experiment2/scatter.pdf'), width = 8, height = 8)
= function(data, fill) {
make_bar.exp2 = ggplot(data = data,
g mapping = aes(x = index,
y = resp)) +
stat_summary(fun = "mean",
geom = "bar",
color = 'black',
fill = fill,
width = 0.8) +
stat_summary(fun.data = "mean_cl_boot",
geom = "linerange",
size = 1) +
stat_summary(mapping = aes(y = pred,
fill = model,
shape = model,
size = model),
fun = 'mean',
geom = 'point',
color = 'black',
position = position_dodge(width = 0.5)) +
facet_wrap(~ index, scales = 'free_x', nrow = 1) +
geom_rect(aes(xmin = index - 0.5, xmax = index + 0.5,
ymin = 0, ymax = 39.9),
fill = 'white') +
geom_custom(data = labels.exp2,
mapping = aes(data = grob,
x = -Inf, y = 36),
grob_fun = function(x) rasterGrob(x,
interpolate = T,
vjust = 0,
hjust = 0)) +
geom_text(aes(label = index,
y = 33),
show.legend = F,
check_overlap = T) +
theme(text = element_text(size = 16),
legend.position = c(0.5, 0.87),
legend.direction = 'horizontal',
legend.title = element_blank(),
axis.title.x = element_blank(),
axis.text.x = element_blank(),
axis.line.x = element_blank(),
axis.ticks.x = element_blank(),
strip.background = element_blank(),
strip.text = element_blank(),
panel.grid.major.y = element_line(),
panel.spacing.x = unit(0.1, "cm"),
plot.margin = margin(t = 0.2, l = 0.2, r = 0.2, b = 0.9, unit = "cm")) +
scale_fill_manual(values = c('baseline' = 'black',
'crm_uniform' = 'gray50',
'crm_full' = 'white'),
labels = model_labels.exp2,
name = 'model') +
scale_size_manual(values = c('baseline' = 1.5,
'crm_uniform' = 1.5,
'crm_full' = 2),
labels = model_labels.exp2,
name = 'model') +
scale_shape_manual(values = c('baseline' = 21, # circle
'crm_uniform' = 24, # triangle
'crm_full' = 23), # diamond
labels = model_labels.exp2,
name = 'model') +
scale_y_continuous(name = 'responsibility judgment',
breaks = seq(40, 100, 20)) +
coord_cartesian(clip = 'off', ylim = c(40, 100))
return(g)
}
= make_bar.exp2(
bar.exp2.agent data = data.exp2.agent %>%
left_join(labels.exp2 %>%
select(low, high, index),
by = c('low', 'high')) %>%
pivot_longer(cols = starts_with('pred'),
names_to = 'model',
values_to = 'pred') %>%
mutate(model = factor(sub('^pred_', '', model),
levels = model_order.exp2)),
fill = 'gray90'
)
= make_bar.exp2(
bar.exp2.object data = data.exp2.object %>%
left_join(labels.exp2 %>%
select(low, high, index),
by = c('low', 'high')) %>%
pivot_longer(cols = starts_with('pred'),
names_to = 'model',
values_to = 'pred') %>%
mutate(model = factor(sub('^pred_', '', model),
levels = model_order.exp2)),
fill = 'gray75'
)
+ inset_element(agent_icon, 0.85, 0.7, 1, 1) +
bar.exp2.agent + inset_element(object_icon, 0.85, 0.8, 1, 1) +
bar.exp2.object plot_layout(ncol = 1) +
plot_annotation(tag_levels = list(c('A', '', 'B', ''))) &
theme(plot.tag = element_text(size = 24))
# ggsave(paste0(figures_dir, 'experiment2/bar.pdf'), width = 10, height = 8)
= read_csv(paste0(data_dir, 'experiment3_agent/trial_info.csv'),
info.exp3.agent show_col_types = F) %>%
pivot_longer(cols = !trial,
names_to = c('.value', 'craft'),
names_pattern = '(.+)_(.)') %>%
mutate(num = low + high)
= read_csv(paste0(data_dir, 'experiment3_agent/trials.csv'),
data.exp3.agent show_col_types = F)
# filter participants who accidentally responded more than once
= data.exp3.agent %>%
rm_ids_agent group_by(id) %>%
summarise(n = n()/length(unique(info.exp3.agent$trial))) %>%
filter(n > 1) %>%
$id
.
= data.exp3.agent %>%
data.exp3.agent filter(!(id %in% rm_ids_agent)) %>%
pivot_longer(cols = c(c, t),
names_to = 'craft',
values_to = 'resp') %>%
# ignore exclusion trial and practice trials
filter(!(trial %in% c("X1", 1, 2))) %>%
# merge with trial info
merge(info.exp3.agent,
by = c('trial', 'craft')) %>%
# factor variables for plotting
mutate(id = factor(id),
plot_id = as.factor(as.integer(id)),
craft = factor(craft))
Number of participants:
length(unique(data.exp3.agent$id))
## [1] 50
Participants were asked: “What factors influenced how you decided to respond? Do you have any questions or comments regarding the experiment?”
= read_csv(paste0(data_dir, 'experiment3_agent/participants.csv'),
participants.exp3.agent show_col_types = F) %>%
filter(id %in% data.exp3.agent$id) %>%
mutate(id = factor(id)) %>%
left_join(data.exp3.agent %>%
distinct(id, plot_id),
by = 'id')
%>%
participants.exp3.agent select(plot_id, feedback) %>%
datatable()
= read_csv(paste0(data_dir, 'experiment3_object/trial_info.csv'),
info.exp3.object show_col_types = F) %>%
pivot_longer(cols = !trial,
names_to = c('.value', 'color'),
names_pattern = '(.+)_(.)') %>%
mutate(num = low + high)
= read_csv(paste0(data_dir, 'experiment3_object/trials.csv'),
data.exp3.object show_col_types = F)
# filter participants who accidentally responded more than once
= data.exp3.object %>%
rm_ids_object group_by(id) %>%
summarise(n = n()/length(unique(info.exp3.object$trial))) %>%
filter(n > 1) %>%
$id
.
= data.exp3.object %>%
data.exp3.object filter(!(id %in% rm_ids_object)) %>%
pivot_longer(cols = c(b, y),
names_to = 'color',
values_to = 'resp') %>%
# ignore exclusion trial and practice trials
filter(!(trial %in% c("X1", 1, 2))) %>%
# merge with trial info
merge(info.exp3.object,
by = c('trial', 'color')) %>%
# factor variables for plotting
mutate(id = factor(id),
plot_id = as.factor(as.integer(id)),
color = factor(color))
Number of participants:
length(unique(data.exp3.object$id))
## [1] 50
Participants were asked: “What factors influenced how you decided to respond? Do you have any questions or comments regarding the experiment?”
= read_csv(paste0(data_dir, 'experiment3_object/participants.csv'),
participants.exp3.object show_col_types = F) %>%
filter(id %in% data.exp3.object$id) %>%
mutate(id = factor(id)) %>%
left_join(data.exp3.object %>%
distinct(id, plot_id),
by = 'id')
%>%
participants.exp3.object select(plot_id, feedback) %>%
datatable()
%>%
participants.exp3.agent rbind(participants.exp3.object) %>%
print_demographics()
## # A tibble: 3 × 2
## gender n
## <chr> <int>
## 1 Female 56
## 2 Male 43
## 3 <NA> 1
## [1] "age:"
## [1] 19.74
## [1] 1.060017
## # A tibble: 7 × 2
## race n
## <chr> <int>
## 1 American Indian/Alaska Native 1
## 2 Asian 44
## 3 Black 7
## 4 Multiracial 6
## 5 Undisclosed/other 3
## 6 White 36
## 7 <NA> 3
## # A tibble: 3 × 2
## ethnicity n
## <chr> <int>
## 1 Hispanic 21
## 2 Non-Hispanic 74
## 3 <NA> 5
## [1] "time taken (min):"
## [1] 14.64606
## [1] 65.07773
= data.frame()
rmse.exp3.agent_full for (p_low in seq(0, 1, by = 0.05)) {
for (p_high in seq(p_low, 1, by = 0.05)) {
= update_search_two(3, 'agent', p_low, p_high)
rmse.exp3.agent_full
}
}colnames(rmse.exp3.agent_full) = c('p_low', 'p_high', 'rmse')
# get optimal values
= rmse.exp3.agent_full[which.min(rmse.exp3.agent_full$rmse),]$p_low
p.exp3.agent_low = rmse.exp3.agent_full[which.min(rmse.exp3.agent_full$rmse),]$p_high
p.exp3.agent_high
# create plot
= plot_search_two(3, 'agent')
plot_rmse.exp3.agent
# update response data
= data.exp3.agent %>%
data.exp3.agent mutate(prob = 1 - (1 - p.exp3.agent_low)^low * (1 - p.exp3.agent_high)^high,
contributor = ifelse(availability == 'high', p.exp3.agent_high, p.exp3.agent_low),
CP = (1 - contributor) * (1 - prob))
Fitting baseline model:
= brm(
fit.exp3.agent_baseline formula = resp ~ 1 + (1 | id),
data = data.exp3.agent,
iter = 8000,
seed = 1,
file = "cache/fit.exp3.agent_baseline")
Fitting CP (multiplicative) model:
= brm(
fit.exp3.agent_cp formula = resp ~ 1 + CP + (1 + CP | id),
data = data.exp3.agent,
iter = 8000,
seed = 1,
file = "cache/fit.exp3.agent_cp")
Fitting CRM-based account (additive):
= brm(
fit.exp3.agent_crm formula = resp ~ 1 + contributor + prob + (1 + contributor + prob | id),
data = data.exp3.agent,
iter = 8000,
seed = 1,
file = "cache/fit.exp3.agent_crm")
Comparing models with leave-one-out cross-validation:
= add_criterion(
fit.exp3.agent_baseline
fit.exp3.agent_baseline,criterion = "loo",
reloo = T,
file = "cache/fit.exp3.agent_baseline")
= add_criterion(
fit.exp3.agent_cp
fit.exp3.agent_cp,criterion = "loo",
reloo = T,
file = "cache/fit.exp3.agent_cp")
= add_criterion(
fit.exp3.agent_crm
fit.exp3.agent_crm,criterion = "loo",
reloo = T,
file = "cache/fit.exp3.agent_crm")
loo_compare(fit.exp3.agent_baseline,
fit.exp3.agent_crm, fit.exp3.agent_cp)
## elpd_diff se_diff
## fit.exp3.agent_crm 0.0 0.0
## fit.exp3.agent_cp -579.9 55.8
## fit.exp3.agent_baseline -793.0 61.8
= brm(
fit.exp3.agent_baseline_individual formula = resp ~ 1,
data = data.exp3.agent %>%
filter(plot_id == 1),
seed = 1,
file = "cache/fit.exp3.agent_baseline_individual")
= brm(
fit.exp3.agent_cp_individual formula = resp ~ 1 + CP,
data = data.exp3.agent %>%
filter(plot_id == 1),
seed = 1,
file = "cache/fit.exp3.agent_cp_individual")
= brm(
fit.exp3.agent_crm_individual formula = resp ~ 1 + contributor + prob,
data = data.exp3.agent %>%
filter(plot_id == 1),
seed = 1,
file = "cache/fit.exp3.agent_crm_individual")
# update model fits for each participant
= data.exp3.agent %>%
data.exp3.agent_model_fits group_by(plot_id) %>%
nest() %>%
ungroup() %>%
mutate(fit_baseline = map(.x = data,
.f = ~ update(fit.exp3.agent_baseline_individual,
newdata = .x,
seed = 1)),
fit_cp = map(.x = data,
.f = ~ update(fit.exp3.agent_cp_individual,
newdata = .x,
seed = 1)),
fit_crm = map(.x = data,
.f = ~ update(fit.exp3.agent_crm_individual,
newdata = .x,
seed = 1))) %>%
mutate(fit_baseline = map(.x = fit_baseline,
.f = ~ add_criterion(.x, criterion = "loo")),
fit_cp = map(.x = fit_cp,
.f = ~ add_criterion(.x, criterion = "loo")),
fit_crm = map(.x = fit_crm,
.f = ~ add_criterion(.x, criterion = "loo")),
model_comparison = pmap(.l = list(baseline = fit_baseline,
cp = fit_cp,
crm = fit_crm),
.f = ~ loo_compare(..1, ..2, ..3)),
best_model = map_chr(.x = model_comparison,
.f = ~ rownames(.) %>%
1]),
.[best_model = factor(best_model,
levels = c("..1", "..2", "..3"),
labels = c("baseline",
"cp",
"crm")))
save(list = c("data.exp3.agent_model_fits"),
file = paste0(data_dir, 'experiment3_agent/model-fits.RData'))
load(file = paste0(data_dir, 'experiment3_agent/model-fits.RData'))
%>%
data.exp3.agent_model_fits count(best_model) %>%
arrange(desc(n))
## # A tibble: 3 × 2
## best_model n
## <fct> <int>
## 1 crm 30
## 2 baseline 10
## 3 cp 10
# count number of positive and negative posteriors on replaceability predictor
%>%
data.exp3.agent_model_fits filter(best_model == 'crm') %>%
$fit_crm %>%
.sapply(function(x) fixef(x)[['prob', 'Estimate']]) %>%
sign() %>%
as_tibble() %>%
count(value)
## # A tibble: 2 × 2
## value n
## <dbl> <int>
## 1 -1 25
## 2 1 5
# count number of positive and negative posteriors on contributor predictor
%>%
data.exp3.agent_model_fits filter(best_model == 'crm') %>%
$fit_crm %>%
.sapply(function(x) fixef(x)[['contributor', 'Estimate']]) %>%
sign() %>%
as_tibble() %>%
count(value)
## # A tibble: 2 × 2
## value n
## <dbl> <int>
## 1 -1 17
## 2 1 13
= data.frame()
rmse.exp3.object_full for (p_low in seq(0, 1, by = 0.05)) {
for (p_high in seq(p_low, 1, by = 0.05)) {
= update_search_two(3, 'object', p_low, p_high)
rmse.exp3.object_full
}
}colnames(rmse.exp3.object_full) = c('p_low', 'p_high', 'rmse')
# get optimal values
= rmse.exp3.object_full[which.min(rmse.exp3.object_full$rmse),]$p_low
p.exp3.object_low = rmse.exp3.object_full[which.min(rmse.exp3.object_full$rmse),]$p_high
p.exp3.object_high
# create plot
= plot_search_two(3, 'object')
plot_rmse.exp3.object
# update response data
= data.exp3.object %>%
data.exp3.object mutate(prob = 1 - (1 - p.exp3.object_low)^low * (1 - p.exp3.object_high)^high,
contributor = ifelse(availability == 'high', p.exp3.object_high, p.exp3.object_low),
CP = (1 - contributor) * (1 - prob))
Fitting baseline model:
= brm(
fit.exp3.object_baseline formula = resp ~ 1 + (1 | id),
data = data.exp3.object,
iter = 8000,
seed = 1,
file = "cache/fit.exp3.object_baseline")
Fitting CP (multiplicative) model:
= brm(
fit.exp3.object_cp formula = resp ~ 1 + CP + (1 + CP | id),
data = data.exp3.object,
iter = 8000,
seed = 1,
file = "cache/fit.exp3.object_cp")
Fitting CRM-based model (additive):
= brm(
fit.exp3.object_crm formula = resp ~ 1 + contributor + prob + (1 + contributor + prob | id),
data = data.exp3.object,
iter = 8000,
seed = 1,
file = "cache/fit.exp3.object_crm")
Comparing models with leave-one-out cross-validation:
= add_criterion(
fit.exp3.object_baseline
fit.exp3.object_baseline,criterion = "loo",
reloo = T,
file = "cache/fit.exp3.object_baseline")
= add_criterion(
fit.exp3.object_cp
fit.exp3.object_cp,criterion = "loo",
reloo = T,
file = "cache/fit.exp3.object_cp")
= add_criterion(
fit.exp3.object_crm
fit.exp3.object_crm,criterion = "loo",
reloo = T,
file = "cache/fit.exp3.object_crm")
loo_compare(fit.exp3.object_baseline,
fit.exp3.object_crm, fit.exp3.object_cp)
## elpd_diff se_diff
## fit.exp3.object_crm 0.0 0.0
## fit.exp3.object_cp -611.6 40.5
## fit.exp3.object_baseline -710.7 42.5
= brm(
fit.exp3.object_baseline_individual formula = resp ~ 1,
data = data.exp3.object %>%
filter(plot_id == 1),
seed = 1,
file = "cache/fit.exp3.object_baseline_individual")
= brm(
fit.exp3.object_cp_individual formula = resp ~ 1 + CP,
data = data.exp3.object %>%
filter(plot_id == 1),
seed = 1,
file = "cache/fit.exp3.object_cp_individual")
= brm(
fit.exp3.object_crm_individual formula = resp ~ 1 + contributor + prob,
data = data.exp3.object %>%
filter(plot_id == 1),
seed = 1,
file = "cache/fit.exp3.object_crm_individual")
# update model fits for each participant
= data.exp3.object %>%
data.exp3.object_model_fits group_by(plot_id) %>%
nest() %>%
ungroup() %>%
mutate(fit_baseline = map(.x = data,
.f = ~ update(fit.exp3.object_baseline_individual,
newdata = .x,
seed = 1)),
fit_cp = map(.x = data,
.f = ~ update(fit.exp3.object_cp_individual,
newdata = .x,
seed = 1)),
fit_crm = map(.x = data,
.f = ~ update(fit.exp3.object_crm_individual,
newdata = .x,
seed = 1))) %>%
mutate(fit_baseline = map(.x = fit_baseline,
.f = ~ add_criterion(.x, criterion = "loo")),
fit_cp = map(.x = fit_cp,
.f = ~ add_criterion(.x, criterion = "loo")),
fit_crm = map(.x = fit_crm,
.f = ~ add_criterion(.x, criterion = "loo")),
model_comparison = pmap(.l = list(baseline = fit_baseline,
cp = fit_cp,
crm = fit_crm),
.f = ~ loo_compare(..1, ..2, ..3)),
best_model = map_chr(.x = model_comparison,
.f = ~ rownames(.) %>%
1]),
.[best_model = factor(best_model,
levels = c("..1", "..2", "..3"),
labels = c("baseline",
"cp",
"crm")))
save(list = c("data.exp3.object_model_fits"),
file = paste0(data_dir, 'experiment3_object/model-fits.RData'))
load(file = paste0(data_dir, 'experiment3_object/model-fits.RData'))
%>%
data.exp3.object_model_fits count(best_model) %>%
arrange(desc(n))
## # A tibble: 3 × 2
## best_model n
## <fct> <int>
## 1 crm 37
## 2 baseline 11
## 3 cp 2
# count number of positive and negative posteriors on replaceability predictor
%>%
data.exp3.object_model_fits filter(best_model == 'crm') %>%
$fit_crm %>%
.sapply(function(x) fixef(x)[['prob', 'Estimate']]) %>%
sign() %>%
as_tibble() %>%
count(value)
## # A tibble: 2 × 2
## value n
## <dbl> <int>
## 1 -1 29
## 2 1 8
# count number of positive and negative posteriors on contributor predictor
%>%
data.exp3.object_model_fits filter(best_model == 'crm') %>%
$fit_crm %>%
.sapply(function(x) fixef(x)[['contributor', 'Estimate']]) %>%
sign() %>%
as_tibble() %>%
count(value)
## # A tibble: 2 × 2
## value n
## <dbl> <int>
## 1 -1 5
## 2 1 32
+ plot_spacer() + plot_rmse.exp3.object +
plot_rmse.exp3.agent plot_annotation(tag_levels = 'A') +
plot_layout(widths = c(4, 1, 4)) &
theme(plot.tag = element_text(size = 24))
# ggsave(paste0(figures_dir, 'experiment3/p_search.pdf'), width = 9, height = 4)
= data.exp3.agent %>%
data.exp3.agent cbind(fit.exp3.agent_baseline %>%
fitted(newdata = data.exp3.agent,
re_formula = NA) %>%
as_tibble() %>%
mutate(pred_baseline = Estimate) %>%
select(pred_baseline)) %>%
cbind(fit.exp3.agent_cp %>%
fitted(newdata = data.exp3.agent,
re_formula = NA) %>%
as_tibble() %>%
mutate(pred_cp = Estimate) %>%
select(pred_cp)) %>%
cbind(fit.exp3.agent_crm %>%
fitted(newdata = data.exp3.agent,
re_formula = NA) %>%
as_tibble() %>%
mutate(pred_crm = Estimate) %>%
select(pred_crm))
= data.exp3.agent %>%
data.exp3.agent_means group_by(trial, craft) %>%
summarise(resp_mean = mean(resp),
resp_low = smean.cl.boot(resp)[2],
resp_high = smean.cl.boot(resp)[3]) %>%
merge(info.exp3.agent, by = c('trial', 'craft')) %>%
left_join(data.exp3.agent %>%
distinct(trial, craft, pred_baseline,
pred_cp, pred_crm),by = c('trial', 'craft'))
= data.exp3.object %>%
data.exp3.object cbind(fit.exp3.object_baseline %>%
fitted(newdata = data.exp3.object ,
re_formula = NA) %>%
as_tibble() %>%
mutate(pred_baseline = Estimate) %>%
select(pred_baseline)) %>%
cbind(fit.exp3.object_cp %>%
fitted(newdata = data.exp3.object ,
re_formula = NA) %>%
as_tibble() %>%
mutate(pred_cp = Estimate) %>%
select(pred_cp)) %>%
cbind(fit.exp3.object_crm %>%
fitted(newdata = data.exp3.object ,
re_formula = NA) %>%
as_tibble() %>%
mutate(pred_crm = Estimate) %>%
select(pred_crm))
= data.exp3.object %>%
data.exp3.object_means group_by(trial, color) %>%
summarise(resp_mean = mean(resp),
resp_low = smean.cl.boot(resp)[2],
resp_high = smean.cl.boot(resp)[3]) %>%
merge(info.exp3.object, by = c('trial', 'color')) %>%
left_join(data.exp3.object %>%
distinct(trial, color, pred_baseline,
pred_cp, pred_crm),by = c('trial', 'color'))
= info.exp3.agent %>%
labels.exp3 distinct(low, high, availability) %>%
arrange(low + high, high, desc(availability)) %>%
mutate(condition = NA,
index = 1:n(),
index_prob = rep(1:(n()/2), each = 2),
grob = pmap(.l = list(availability, low, high),
.f = ~ readPNG(paste0(figures_dir, 'experiment3/sets/',
1, ..2, ..3, '.png'))))
..
= c('baseline' = 'Contribution model',
model_labels.exp3 'cp' = 'CP model',
'crm' = 'CRM-based model')
= c('baseline', 'cp', 'crm') model_order.exp3
= make_scatter(
scatter.exp3.agent_cp 'cp', 'CP model', seq(20, 100, 20))
data.exp3.agent_means, = make_scatter(
scatter.exp3.agent_crm 'crm', 'CRM-based model', seq(20, 100, 20))
data.exp3.agent_means,
= make_scatter(
scatter.exp3.object_cp 'cp', 'CP model', seq(20, 100, 20))
data.exp3.object_means, = make_scatter(
scatter.exp3.object_crm 'crm', 'CRM-based model', seq(20, 100, 20))
data.exp3.object_means,
+ inset_element(agent_icon, 0.85, 0.01, 1, 0.25) +
scatter.exp3.agent_cp + inset_element(agent_icon, 0.85, 0.01, 1, 0.25) +
scatter.exp3.agent_crm + inset_element(object_icon, 0.85, 0.01, 1, 0.15) +
scatter.exp3.object_cp + inset_element(object_icon, 0.85, 0.01, 1, 0.15) +
scatter.exp3.object_crm plot_layout(ncol = 2) +
plot_annotation(tag_levels = list(c('A', '', '', '',
'B', '', '', ''))) &
theme(plot.title = element_text(hjust = 0.5),
plot.tag = element_text(size = 24))
# ggsave(paste0(figures_dir, 'experiment3/scatter.pdf'), width = 8, height = 8)
= function(data, fill) {
make_bar.exp3 = ggplot(data = data,
g mapping = aes(x = index,
y = resp)) +
stat_summary(fun = "mean",
geom = "bar",
color = 'black',
fill = fill,
width = 0.8) +
stat_summary(fun.data = "mean_cl_boot",
geom = "linerange",
size = 1) +
stat_summary(mapping = aes(y = pred,
fill = model,
shape = model,
size = model),
fun = 'mean',
geom = 'point',
color = 'black',
position = position_dodge(width = 0.5)) +
facet_wrap(~ index, scales = 'free_x', nrow = 2) +
geom_rect(aes(xmin = index - 0.5, xmax = index + 0.5,
ymin = -1, ymax = 19.9),
fill = 'white') +
geom_custom(data = labels.exp3,
mapping = aes(data = grob,
x = -Inf, y = 9),
grob_fun = function(x) rasterGrob(x,
interpolate = T,
vjust = 0,
hjust = 0)) +
geom_text(aes(label = index,
y = 5),
show.legend = F,
check_overlap = T) +
theme(text = element_text(size = 16),
legend.position = c(0.5, 0.94),
legend.direction = 'horizontal',
legend.title = element_blank(),
axis.title.x = element_blank(),
axis.text.x = element_blank(),
axis.line.x = element_blank(),
axis.ticks.x = element_blank(),
strip.background = element_blank(),
strip.text = element_blank(),
panel.grid.major.y = element_line(),
panel.spacing.y = unit(1.3, "cm"),
panel.spacing.x = unit(0.1, "cm"),
plot.margin = margin(t = 0.2, l = 0.2, r = 0.2, b = 1.3, unit = "cm")) +
scale_fill_manual(values = c('baseline' = 'black',
'cp' = 'gray50',
'crm' = 'white'),
labels = model_labels.exp3,
name = 'model') +
scale_size_manual(values = c('baseline' = 2,
'cp' = 2,
'crm' = 2.5),
labels = model_labels.exp3,
name = 'model') +
scale_shape_manual(values = c('baseline' = 21, # circle
'cp' = 24, # triangle
'crm' = 23), # diamond
labels = model_labels.exp3,
name = 'model') +
scale_y_continuous(name = 'responsibility judgment',
breaks = seq(20, 100, 20)) +
coord_cartesian(clip = 'off', ylim = c(20, 100))
return (g)
}
= make_bar.exp3(
barplot.exp3.agent data = data.exp3.agent %>%
left_join(labels.exp3 %>%
select(low, high, availability, index, index_prob),
by = c('low', 'high', 'availability')) %>%
pivot_longer(cols = starts_with('pred'),
names_to = 'model',
values_to = 'pred') %>%
mutate(model = factor(sub('^pred_', '', model),
levels = model_order.exp3)),
fill = 'gray90'
)
= make_bar.exp3(
barplot.exp3.object data = data.exp3.object %>%
left_join(labels.exp3 %>%
select(low, high, availability, index, index_prob),
by = c('low', 'high', 'availability')) %>%
pivot_longer(cols = starts_with('pred'),
names_to = 'model',
values_to = 'pred') %>%
mutate(model = factor(sub('^pred_', '', model),
levels = model_order.exp3)),
fill = 'gray75'
)
+ inset_element(agent_icon, 0.9, 0.85, 1, 1, align_to = 'full') +
barplot.exp3.agent + inset_element(object_icon, 0.9, 0.9, 1, 1) +
barplot.exp3.object plot_layout(ncol = 1) +
plot_annotation(tag_levels = list(c('A', '', 'B', ''))) &
theme(plot.tag = element_text(size = 24))
# ggsave(paste0(figures_dir, 'experiment3/bar.pdf'), width = 10, height = 12)
sessionInfo()
## R version 4.1.3 (2022-03-10)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Big Sur/Monterey 10.16
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] grid stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] forcats_0.5.1 stringr_1.4.0 dplyr_1.0.8
## [4] purrr_0.3.4 readr_2.1.2 tidyr_1.2.0
## [7] tibble_3.1.6 tidyverse_1.3.2 patchwork_1.1.1
## [10] egg_0.4.5 gridExtra_2.3 png_0.1-7
## [13] broom.mixed_0.2.9.3 showtext_0.9-5 showtextdb_3.0
## [16] sysfonts_0.8.8 ggplotify_0.1.0 lemon_0.4.5
## [19] scales_1.2.0 xtable_1.8-4 Hmisc_4.6-0
## [22] ggplot2_3.3.5 Formula_1.2-4 survival_3.2-13
## [25] lattice_0.20-45 Metrics_0.1.4 extraDistr_1.9.1
## [28] brms_2.17.0 Rcpp_1.0.8.3 DT_0.22
## [31] lme4_1.1-29 Matrix_1.5-1 ggstatsplot_0.9.1
## [34] knitr_1.38
##
## loaded via a namespace (and not attached):
## [1] utf8_1.2.2 tidyselect_1.1.2 htmlwidgets_1.5.4
## [4] munsell_0.5.0 codetools_0.2-18 future_1.24.0
## [7] miniUI_0.1.1.1 withr_2.5.0 Brobdingnag_1.2-9
## [10] colorspace_2.0-3 highr_0.9 rstudioapi_0.13
## [13] stats4_4.1.3 bayesplot_1.9.0 listenv_0.8.0
## [16] labeling_0.4.2 emmeans_1.8.2 rstan_2.21.3
## [19] bit64_4.0.5 farver_2.1.0 datawizard_0.4.0
## [22] bridgesampling_1.1-2 coda_0.19-4 parallelly_1.31.0
## [25] vctrs_0.4.0 generics_0.1.2 TH.data_1.1-0
## [28] xfun_0.30 R6_2.5.1 markdown_1.1
## [31] reshape_0.8.8 gridGraphics_0.5-1 assertthat_0.2.1
## [34] vroom_1.5.7 promises_1.2.0.1 multcomp_1.4-18
## [37] nnet_7.3-17 googlesheets4_1.0.0 gtable_0.3.0
## [40] globals_0.14.0 processx_3.5.3 sandwich_3.0-1
## [43] rlang_1.1.1 zeallot_0.1.0 splines_4.1.3
## [46] gargle_1.2.0 broom_0.8.0 checkmate_2.0.0
## [49] inline_0.3.19 modelr_0.1.8 yaml_2.3.5
## [52] reshape2_1.4.4 abind_1.4-5 threejs_0.3.3
## [55] crosstalk_1.2.0 backports_1.4.1 httpuv_1.6.5
## [58] tensorA_0.36.2 tools_4.1.3 bookdown_0.26
## [61] ellipsis_0.3.2 jquerylib_0.1.4 posterior_1.2.1
## [64] RColorBrewer_1.1-3 WRS2_1.1-3 ggridges_0.5.3
## [67] plyr_1.8.7 base64enc_0.1-3 ps_1.6.0
## [70] prettyunits_1.1.1 rpart_4.1.16 correlation_0.8.0
## [73] zoo_1.8-9 haven_2.4.3 cluster_2.1.2
## [76] fs_1.5.2 furrr_0.2.3 magrittr_2.0.3
## [79] data.table_1.14.2 reprex_2.0.1 colourpicker_1.1.1
## [82] googledrive_2.0.0 mvtnorm_1.1-3 matrixStats_0.61.0
## [85] hms_1.1.1 shinyjs_2.1.0 mime_0.12
## [88] evaluate_0.15 shinystan_2.6.0 jpeg_0.1-9
## [91] readxl_1.4.0 rstantools_2.2.0 compiler_4.1.3
## [94] crayon_1.5.1 minqa_1.2.4 StanHeaders_2.21.0-7
## [97] htmltools_0.5.2 tzdb_0.3.0 mc2d_0.1-21
## [100] later_1.3.0 RcppParallel_5.1.5 lubridate_1.8.0
## [103] DBI_1.1.2 dbplyr_2.1.1 MASS_7.3-55
## [106] boot_1.3-28 cli_3.2.0 parallel_4.1.3
## [109] insight_0.17.0 igraph_1.3.0 pkgconfig_2.0.3
## [112] statsExpressions_1.3.1 foreign_0.8-82 xml2_1.3.3
## [115] paletteer_1.4.0 dygraphs_1.1.1.6 bslib_0.3.1
## [118] estimability_1.4.1 rvest_1.0.2 yulab.utils_0.0.4
## [121] distributional_0.3.0 callr_3.7.0 digest_0.6.29
## [124] parameters_0.17.0 rmarkdown_2.13 cellranger_1.1.0
## [127] htmlTable_2.4.0 shiny_1.7.1 gtools_3.9.2
## [130] nloptr_2.0.0 lifecycle_1.0.1 nlme_3.1-155
## [133] jsonlite_1.8.0 fansi_1.0.3 pillar_1.7.0
## [136] loo_2.5.1 httr_1.4.2 fastmap_1.1.0
## [139] pkgbuild_1.3.1 glue_1.6.2 xts_0.12.1
## [142] bayestestR_0.11.5 shinythemes_1.2.0 bit_4.0.4
## [145] stringi_1.7.6 sass_0.4.1 performance_0.9.0
## [148] rematch2_2.1.2 latticeExtra_0.6-29